
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327299460

A Solution Method for the Generalised Linear Systems of Equations Arising in

Direct Boundary Element Methods Applied to Problems with Robin Boundary

Conditions

Chapter · August 2018

DOI: 10.1007/978-981-13-2273-0_18

CITATIONS

0
READS

249

1 author:

Stephen Kirkup

University of Central Lancashire

686 PUBLICATIONS   826 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Stephen Kirkup on 21 September 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/327299460_A_Solution_Method_for_the_Generalised_Linear_Systems_of_Equations_Arising_in_Direct_Boundary_Element_Methods_Applied_to_Problems_with_Robin_Boundary_Conditions?enrichId=rgreq-549c6fa750a0daccf821274f8b36430c-XXX&enrichSource=Y292ZXJQYWdlOzMyNzI5OTQ2MDtBUzo2NzMzMzczNzQxNzExNDBAMTUzNzU0NzU0ODUwNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/327299460_A_Solution_Method_for_the_Generalised_Linear_Systems_of_Equations_Arising_in_Direct_Boundary_Element_Methods_Applied_to_Problems_with_Robin_Boundary_Conditions?enrichId=rgreq-549c6fa750a0daccf821274f8b36430c-XXX&enrichSource=Y292ZXJQYWdlOzMyNzI5OTQ2MDtBUzo2NzMzMzczNzQxNzExNDBAMTUzNzU0NzU0ODUwNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-549c6fa750a0daccf821274f8b36430c-XXX&enrichSource=Y292ZXJQYWdlOzMyNzI5OTQ2MDtBUzo2NzMzMzczNzQxNzExNDBAMTUzNzU0NzU0ODUwNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Kirkup?enrichId=rgreq-549c6fa750a0daccf821274f8b36430c-XXX&enrichSource=Y292ZXJQYWdlOzMyNzI5OTQ2MDtBUzo2NzMzMzczNzQxNzExNDBAMTUzNzU0NzU0ODUwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Kirkup?enrichId=rgreq-549c6fa750a0daccf821274f8b36430c-XXX&enrichSource=Y292ZXJQYWdlOzMyNzI5OTQ2MDtBUzo2NzMzMzczNzQxNzExNDBAMTUzNzU0NzU0ODUwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Central_Lancashire?enrichId=rgreq-549c6fa750a0daccf821274f8b36430c-XXX&enrichSource=Y292ZXJQYWdlOzMyNzI5OTQ2MDtBUzo2NzMzMzczNzQxNzExNDBAMTUzNzU0NzU0ODUwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Kirkup?enrichId=rgreq-549c6fa750a0daccf821274f8b36430c-XXX&enrichSource=Y292ZXJQYWdlOzMyNzI5OTQ2MDtBUzo2NzMzMzczNzQxNzExNDBAMTUzNzU0NzU0ODUwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Kirkup?enrichId=rgreq-549c6fa750a0daccf821274f8b36430c-XXX&enrichSource=Y292ZXJQYWdlOzMyNzI5OTQ2MDtBUzo2NzMzMzczNzQxNzExNDBAMTUzNzU0NzU0ODUwNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf
www.kirkup.info



Proceedings of the 1st International Conference on Numerical Modelling in 

Engineering (free download of full proceedings) , Volume 2: Numerical Modelling in 

Mechanical Engineering, 28-29 August 2018, Ghent University, Belgium, 212-224 

  

 

A Solution Method for the Generalised Linear Systems of 

Equations Arising in Direct Boundary Element Methods 

Applied to Problems with Robin Boundary Conditions 
Stephen Kirkup[0000-0002-9680-7778] 

 School of Engineering, University of Central Lancashire, UK. 

smkirkup@uclan.ac.uk 

Abstract. When the direct boundary element method is used to solve problems with 

a general Robin (or mixed) boundary condition the resulting linear system of equations 

is not in the standard form. In this paper, a method involving exchanging columns of 

the matrices within the system is defined. The method is based on the principle of 

minimising the propagation of error and returns a system in standard form. 

Implementations of the method are developed in Matlab, Excel-VBA and Fortran. The 

method is demonstrated through its application to a test linear system and then it is 

applied within boundary element method test problems.  

Keywords: Boundary Element Method, Linear System, Robin 

1 Introduction 

In this paper a numerical method for solving a general linear system of equations is 

developed, implemented in three programming languages and is demonstrated on a 

practical application in which it is useful - the solution of the system of equations that 

arise in the direct boundary element method with a general Robin (or mixed) boundary 

condition. The problem is that of solving the system 

 

 𝐴𝑥 = 𝐵𝑦 + 𝑐, (1a) 

 

where A and B are known 𝑛 × 𝑛 matrices and 𝑐 is a known 𝑛-vector, with 

 

 𝛼𝑖 𝑥𝑖 + 𝛽𝑖 𝑦𝑖 = 𝑓𝑖   for 𝑖 = 1…𝑛 (1b) 

  

where the 𝛼𝑖 , 𝛽𝑖 and 𝑓𝑖  are known constants with 𝛼𝑖  and 𝛽𝑖 never both zero for all i. The 

evaluation of vectors 𝑥 and 𝑦 is the solution of the process.  The solution of the standard 

linear system of equations is typically carried out by a standard method such as LU 

factorisation [1-2] and forward and back substitution, or by a technique that takes 

advantage of a particular structure or property of the matrices.  

The simplest method for solving the problem (1) can be developed through writing 

(1b) in the form 

 𝐷𝛼 𝑥 + 𝐷𝛽 𝑦 = 𝑓 , (2) 

 

https://www.researchgate.net/deref/http%3A%2F%2Fwww.cad-cam-cae.com%2Fblog18%2FNMEProceedings
https://www.researchgate.net/deref/http%3A%2F%2Fwww.cad-cam-cae.com%2Fblog18%2FNMEProceedings
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where 𝐷𝛼 and   𝐷𝛽 are diagonal matrices with [𝐷𝛼 ]𝑖𝑖 = 𝛼𝑖  and  [𝐷𝛽 ]𝑖𝑖 = 𝛽𝑖 and then 

forming the following system: 

 

 
(
𝐴 −𝐵
𝐷𝛼   𝐷𝛽

) (
𝑥
𝑦) = (

𝑐

𝑓), 
(3) 

 

which can clearly be solved by standard methods. However, in forming the linear 

system (3) from the system (1), the dimension of the matrix has doubled, with an 

increased expectation of computational cost for the solution. This method is not subject 

of this paper, but this does provide a useful technique for validating the resulting 

method. 

    Returning to the problem (1), clearly if all the 𝛼𝑖  𝑎re non-zero, then a straightforward 

substitution of a rearrangement of (1b) (𝑥𝑖 =
𝑓𝑖

𝛼𝑖
−
𝛽𝑖

𝛼𝑖
 𝑦𝑖), followed by its substitution 

into the system (1a), will readily yield a solution through a standard method like the 

aforementioned LU factorization. A similar solution method can be applied if we can 

guarantee that all the 𝛽𝑖  are non-zero. However, the method that we seek to develop in 

this paper must be prepared for αi or βi taking zero values. There is also the general 

concern in numerical work in dividing by ‘small’ numbers, for example, if any of the 

αi or βi are small. The approach adopted in this paper is to automate the rearrangement 

of the general system above, based on the relative size of αi and βi, and of the matrices, 

into a standard form of a linear system, so that standard techniques can then be applied. 

For simplicity, for the development and communication of the method, the techniques 

are initially applied to systems where all values are real, but the method is also 

applicable to complex-valued systems. Following an algorithmic rearrangement of the 

equations, that is the subject of this paper, LU factorisation followed by forward and 

back substitution is used to return the solution. 

    The General Linear System (GLS) method is implemented in Excel-VBA, and is 

included in the Excel spreadsheets LIBEM2 and LIBEMA that solve Laplace’s 

equation by the boundary element method (BEM) for two-dimensional and 

axisymmetric three-dimensional problems. The method is also developed in Matlab and 

Fortran. Test problems are developed, including tests with the intended boundary 

element method application, in order to demonstrate the effectiveness of the method. 

2 Boundary Element Method 

The boundary element method is an established method for solving partial differential 

equations and has been widely applied in science and engineering [3]. Linear systems, 

in the general form stated, arise in the direct boundary element method with the general 

Robin or mixed boundary condition. As an illustration of this, let us consider the 

solution of the Laplace equation 

 

 ∇2𝜑(𝒑) = 0         (𝒑 ∊ 𝐷) (4a) 
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in an interior domain D, bounded by a closed boundary S, with a Robin boundary 

condition of the form 

 𝛼(𝒑)𝝋(𝒑) + 𝛽(𝒑)
𝜕𝜑

𝜕𝑛𝑝
(𝒑) = 𝑓(𝒑)     (𝒑 ∊ 𝑆),  (4b) 

where 𝒏𝑝 is the unit outward normal to the boundary at 𝒑. Note that, in the special case 

in which  𝛼(𝒑) = 1 and 𝛽(𝒑) = 0, the boundary condition is in the Dirichlet form and, 

if 𝛽(𝒑) = 1 and 𝛼(𝒑) = 0, the boundary condition is in the Neumann form. The 

solutions of potential equations of this type by the sorts of methods outlined in this 

section are introduced in Jaswon and Symm [4] and Symm [5, 6]. 

There are two distinct derivation routes in the boundary element method; the direct 

method, based on Green’s second theorem, and the indirect method, in which the 

solution is written in terms of a layer potential function on the boundary. In both the 

direct and indirect boundary element methods, the first stage in deriving a 

computational solution involves finding a function or functions on the boundary by 

solving a boundary integral equation (an integral equation that is defined only on the 

boundary). Once a boundary solution is obtained, an integral relation can be used to 

determine the domain solution from the boundary functions that are known. It is the 

first stage of the BEM that is of interest in this paper and we will see that this problem 

of obtaining a general ‘Robin’ solutions is particular to direct boundary element method 

results in problems like the system (1). 

 

2.1      Direct Boundary Element Method 

The direct BEM is most straightforwardly derived from the following integral equation 

reformulation of the interior Laplace equation: 

 

 
 { 𝑀𝜑}𝑆 (𝒑)  +½ 𝜑(𝒑)  =  { 𝐿 𝑣 }𝑆 (𝒑)    (𝒑 ∈  𝑆) ,  

 

(5a) 

 

 
 { 𝑀𝜑}𝑆 (𝒑)  +  𝜑(𝒑)  =  { 𝐿 𝑣 }𝑆 (𝒑)    (𝒑 ∈  𝐷) , 

 

(5b) 

 

where in equation (5a) it is presumed that 𝑆 is smooth at 𝒑 and in which the further 

shorthand is used to  replace the boundary function 
𝜕𝜑

𝜕𝑛𝑞
 by 𝑣 (𝑣 =

𝜕𝜑

𝜕𝑛𝑞
). 

. The equations (5a,b)  are often written in a more concise form using operator notation. 

The operators L and M are defined as follows: 

 
 {𝐿𝜁}𝛤(𝒑) = ∫ 𝐺(𝒑, 𝒒) 𝜁(𝒒)

𝛤

𝑑𝑆𝑞   

 

(6) 

 
and  {𝑀𝜁}𝛤(𝒑) = ∫

𝜕𝐺(𝒑, 𝒒)

𝜕𝑛𝑞
 𝜁(𝒒)

𝛤

𝑑𝑆𝑞 , 

  

(7) 

where (in this case) Γ is the whole or part of the surface S and 𝐺(𝒑, 𝒒) is the free-space 

Green’s function for the Laplace equation.  
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An integral equation method is then applied to the boundary integral equation (5a) 

in order to derive the BEM. One of the most straightforward methods of derivation from 

the integral equation is by the method of collocation and this technique will be applied 

in this paper. The application of collocation to an integral equation like (5a) generally 

requires that the boundary is approximated and simplified by a set of panels, so that 

𝑆 is replaced by �̃�. The functions defined on the surface are also represented by 

simplified functions. In the simplest application of collocation to an integral equation 

the boundary is approximated by a set of n straight line panels 𝛥�̃�1, 𝛥�̃�2, … , 𝛥�̃�𝑛  (in 2D) 

(so that �̃� = ∑ 𝛥�̃�𝑖
𝑛
𝑖=1  ) and the boundary functions are approximated by a constant on 

each panel. With the collocation points 𝒑1, 𝒑2, … 𝒑𝑛, located on the panels each with 

the same index, the integral equation (5a) becomes the following approximation, 

written in matrix-vector form 

 

 (MSS +
1

2
I) 𝜑𝑆 ≈ LSS𝑣𝑆 , 

 

(8) 

where LSS and MSS are matrices, I is the identity matrix and the vectors 𝜑𝑆 and 𝑣𝑆, are 

the representative values of the function φ and 𝑣 at the collocation points.  Hence the 

collocation method requires the solution of the following system 

 

 (MSS +
1

2
I) �̂�𝑆 = LSS 𝑣𝑆 , 

 

(9a) 

 𝛼𝑖  �̂�𝑆𝑖 + �̂�𝑖 𝑣𝑆𝑖 = 𝑓𝑆𝑖   for 𝑖 = 1…𝑛 , (9b) 

 

where the �̂�𝑆𝑖 and  𝑣𝑆𝑖  are the approximate or representative values of the functions 𝜑 

and 𝑣 at the collocation point 𝒑𝒊.  
The similarity in form of equations (9) and the system addressed in this paper is 

clear. In this case there is no equivalent to the ‘𝑐’ term in (1a), however its inclusion is 

useful in problems of this form when there is an existing free-field solution or source 

within the domain and the boundary and boundary condition modify that solution. 

Once the surface solution have been found, the solutions within the domain can be 

found through the application of equation (5b): 

 

 
 𝜑(𝒑)  =  { 𝐿 𝑣 }𝑆 (𝒑)  − { 𝑀𝜑}𝑆 (𝒑)  (𝒑 ∈  𝐷) . 

 
(10) 

Usually the solution is sought at a set of points in the domain and the discrete equivalent 

of this equation is expressed as follows 

 

 �̂�𝐷 = LDS 𝑣𝑆 −MDS �̂�𝑆 , (11) 

 

where �̂�𝐷 represents the approximate solution at the domain points. 
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2.2      Indirect Boundary Element Method 

The non-standard form of the linear system does not arise in the implementation of the 

‘indirect’ boundary element method, but it is useful to also consider it here in order to 

contrast it with the direct boundary element method. In the indirect method, it is 

presumed that the solution of Laplace’s equation in the domain is related to a layer 

potential on the boundary. For example with a ‘single layer’ potential σ; 

 

 𝜑(𝒑) = {𝐿𝜎}𝑆(𝒑)      (𝒑 ∊ 𝐷 ∪ 𝑆), (12a) 

   𝑣(𝒑) = {(𝑀𝑡 +
1

2
𝐼)𝜎}𝑆(𝒑)     (𝒑 ∊ 𝑆) , 

   

(12b) 

where the operator 𝑀𝑡 is defined as follows 

 
  {𝑀𝑡𝜁}𝛤(𝒑) = ∫

𝜕𝐺(𝒑, 𝒒)

𝜕𝑛𝑝
 𝜁(𝒒)

𝛤

𝑑𝑆𝑞  . 

  

 

The application of an integral equation method to the indirect equations, following 

a similar technique to the method outlined earlier, gives linear systems of the following 

form: 

 �̂�𝑆  = LSS �̂�𝑆   (13a) 

   

 𝑣𝑆 = (M𝑆𝑆
𝑡 +

1

2
I) �̂�𝑆  . (13b) 

 

as the discrete analogues of equations (12a,b). By writing the boundary condition (9b) 

in the form 

 

 𝐷𝛼 �̂�𝑆 + 𝐷𝛽 𝑣𝑆 = 𝑓𝑆  , (20) 

 

where 𝐷𝛼 and   𝐷𝛽 are diagonal matrices (2) and substituting the expressions from 

equations (13a) and (13b) gives 

 

 
[ 𝐷𝛼 LSS +  𝐷𝛽 (M𝑆𝑆

𝑡 +
1

2
I)] �̂�𝑆    = 𝑓𝑆  , 

 

(19) 

a linear system of equations in the standard form. Having found the approximations to 

the surface solution �̂�𝑆  the solutions at a set of points in the domain can be found using 

the discrete equivalent of equation (12a), 
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 �̂�𝐷  = LDS �̂�𝑆 . (20) 

 

3 Algorithm for Solving the General Linear System 

In this section we return to the fundamental problem addressed in this paper; the 

solution of a linear system defined at the beginning of the paper by equations (1a,b).  

The author’s book [7] and associated software and subsequent work in developing 

boundary element software libraries [8], the implementations are based on the Robin 

boundary condition in order to maintain generality. In this section, a method for 

exchanging columns is developed on the principle of minimising error propagation. 

    In order to consider the development of the method, let us look at the system (1a) in 

more detail: 

 (

𝑎11 . . 𝑎1𝑛
: . . :
𝑎𝑛1 . . 𝑎𝑛𝑛

)(

𝑥1
:
𝑥𝑛
) = (

𝑏11 . . 𝑎1𝑛
: . . :
𝑏𝑛1 . . 𝑎𝑛𝑛

)(

𝑦1
:
𝑦𝑛
)+ (

𝑐1
:
𝑐𝑛
), (20) 

 

for any index of 𝑥 and 𝑦 we can make one or the other of the following substitutions, 

through rearranging the equations (1b): 

 

 𝑦𝑖 =
𝑓𝑖
𝛽𝑖
−
𝛼𝑖
𝛽𝑖
 𝑥𝑖,     𝑥𝑖 =

𝑓𝑖
𝛼𝑖
−
𝛽𝑖
𝛼𝑖
 𝑦𝑖  . (19) 

 

Clearly, if either 𝛼𝑖  or 𝛽𝑖  is zero then the choice of substitution is clear-cut. In numerical 

work there is also the need to avoid division by ‘small’ numbers, and hence the above 

guidance also extends to the situation in which either 𝛼𝑖 or 𝛽𝑖  is ‘small’. The approach 

adopted by Symm [5] was to base the choice of substitution in (19) on the relative 

modulus of 𝛼𝑖 and 𝛽𝑖, so that the division was always by the larger of the two values. 

However, in this work, the matrices are also taken into account within the method. 

    In order to arrive at a criterion for the decision to exchange sides for a particular 𝑥𝑗 

and 𝑦𝑗 in the system above. Let us rewrite the system above, highlighting the index ‘j’: 

 

(

 
 

𝑎11 . . 𝑎1𝑗 . . 𝑎1𝑛
:
:
:

. .

. .

. .

:
:
:

. .

. .

. .

:
:
:

𝑎𝑛1 . . 𝑎𝑛𝑗 . . 𝑎𝑛𝑛)

 
 

(

 

𝑥1
:
𝑥𝑗
:
𝑥𝑛)

 =

(

 
 

𝑏11 . . 𝑏1𝑗 . . 𝑏1𝑛
:
:
:

. .

. .

. .

:
:
:

. .

. .

. .

:
:
:

𝑏𝑛1 . . 𝑏𝑛𝑗 . . 𝑏𝑛𝑛)

 
 

(

 

𝑦1
:
𝑦𝑗
:
𝑦𝑛)

 +

(

 

𝑐1
:
𝑐𝑗
:
𝑐𝑛)

  . 

 

For clarity, let us consider one ′𝑥𝑗′ in the system as a candidate to be replaced by 𝑦𝑗. 

The replacement is show in the following equation, the 𝑥𝑗 and 𝑦𝑗 and the jth columns of 

the matrices are exchanged: 
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(

 
 

𝑎11 . . −𝑏1𝑗 . . 𝑎1𝑛
:
:
:

. .

. .

. .

:
:
:

. .

. .

. .

:
:
:

𝑎𝑛1 . . −𝑏𝑛𝑗 . . 𝑎𝑛𝑛)

 
 

(

 

𝑥1
:
𝑦𝑗
:
𝑥𝑛)

 =

(

 
 

𝑏11 . . −𝑎1𝑗 . . 𝑏1𝑛
:
:
:

. .

. .

. .

:
:
:

. .

. .

. .

:
:
:

𝑏𝑛1 . . −𝑎𝑛𝑗 . . 𝑏𝑛𝑛)

 
 

(

 

𝑦1
:
𝑥𝑗
:
𝑦𝑛)

 +

(

 

𝑐1
:
𝑐𝑗
:
𝑐𝑛)

  . 

 

With the substitutions (19), the left hand side can be altered as follows 

 

(

 
 

𝑎11 . . −𝑏1𝑗 . . 𝑎1𝑛
:
:
:

. .

. .

. .

:
:
:

. .

. .

. .

:
:
:

𝑎𝑛1 . . −𝑏𝑛𝑗 . . 𝑎𝑛𝑛)

 
 

(

 

𝑥1
:
𝑦𝑗
:
𝑥𝑛)

 

=

(

 
 

𝑏11 . . −𝑎1𝑗 . . 𝑏1𝑛
:
:
:

. .

. .

. .

:
:
:

. .

. .

. .

:
:
:

𝑏𝑛1 . . −𝑎𝑛𝑗 . . 𝑏𝑛𝑛)

 
 

(

 
 
 
 
 

𝑓1
𝛽1
−
𝛼1
𝛽1
 𝑥1

:
𝑓𝑗
𝛼𝑗
−
𝛽𝑗
𝛼𝑗
 𝑦𝑗

:
𝑓𝑛
𝛽𝑛
−
𝛼𝑛
𝛽𝑛
 𝑥𝑛)

 
 
 
 
 

+

(

 

𝑐1
:
𝑐𝑗
:
𝑐𝑛)

  . 

  

Collecting the terms in the 𝑥𝑖 and 𝑦𝑖 on the right hand side, gives the following equation: 

 

 
(

 
 
 
 
 
𝑎11 +

𝛼1
𝛽1

. . −𝑏1𝑗 +
𝛽𝑗
𝛼𝑗

. . 𝑎1𝑛 +
𝛼𝑛
𝛽𝑛

:
:
:

. .

. .

. .

:
:
:

. .

. .

. .

:
:
:

𝑎𝑛1 +
𝛼1
𝛽1

. . −𝑏𝑛𝑗 +
𝛽𝑗
𝛼𝑗

. . 𝑎𝑛𝑛 +
𝛼𝑛
𝛽𝑛)

 
 
 
 
 

(

 

𝑥1
:
𝑦𝑗
:
𝑥𝑛)

 

=

(

 
 
 
 

𝑏11
𝛽1

. .
−𝑎1𝑗
𝛼𝑗

. .
𝑏1𝑛
𝛽𝑛

:
:
:

. .

. .

. .

:
:
:

. .

. .

. .

:
:
:

𝑏11
𝛽1

. .
−𝑎1𝑗
𝛼𝑗

. .
𝑏𝑛𝑛
𝛽𝑛 )

 
 
 
 

(

 
 

𝑓1
:
𝑓𝑗
:
𝑓𝑛)

 
 
+

(

 

𝑐1
:
𝑐𝑗
:
𝑐𝑛)

  . 

 

(20) 

 

Let us now consider the decision to exchange the 𝑥𝑗 term by comparing the relative 

error made in the components of the right hand side of the matrix for the two 

alternatives of exchanging the components. For the jth column, the ijth element is 

−(𝑏𝑖𝑗 + 
𝛽𝑗

𝛼𝑗
) if the matrix components have been exchanged and 𝑎𝑖𝑗 +

𝛼𝑗

𝛽𝑗
  if they had 

not.  
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    Let δ be the relative error in 𝛼𝑗 and let ε be the relative error in 𝛽𝑗. Hence the error 

propagated by process is 
𝛼𝑗(1+𝛿)

𝛽𝑗(1+𝜀)
−
𝛼𝑗

𝛽𝑗
≈
𝛼𝑗

𝛽𝑗
(𝛿 − 𝜀) if 𝑥𝑗 and 𝑦𝑗 remain in place and 

𝛽𝑗(1+𝜀)

𝛼𝑗(1+𝛿)
 −

𝛽𝑗

𝛼𝑗
≈  

𝛽𝑗

𝛼𝑗
(𝜀 − 𝛿) if the 𝑥𝑗 and 𝑦𝑗 are exchanged. Hence the relative error 

approximation in the ijth element of the left hand side matrix is 
1

𝑎𝑖𝑗

𝛼𝑗

𝛽𝑗
(𝛿 − 𝜀) if 𝑥𝑗 and 

𝑦𝑗 remain in place and 
1

𝑏𝑖𝑗

𝛽𝑗

𝛼𝑗
(𝜀 − 𝛿) if the 𝑥𝑗 and 𝑦𝑗 are exchanged.  

 

Let the decision on whether to exchange 𝑥𝑗 and 𝑦𝑗 be based on the relative error that is 

propagated. From the expressions above, this would infer that if |
1

𝑏𝑖𝑗

𝛽𝑗

𝛼𝑗
(𝜀 − 𝛿)| >

|
1

𝑎𝑖𝑗

𝛼𝑗

𝛽𝑗
(𝛿 − 𝜀) | or, simplifying, |

1

𝑏𝑖𝑗

𝛽𝑗

𝛼𝑗
| > |

1

𝑎𝑖𝑗

𝛼𝑗

𝛽𝑗
 |then the 𝑥𝑗 and 𝑦𝑗 are exchanged. 

However, the decisions to exchange have to be made on a column-by-column (of the 

matrices) basis rather than element-by-element basis. Hence the 𝑎𝑖𝑗 and 𝑏𝑖𝑗 terms in the 

inequality above are replaced by ‖𝑎𝑗‖ and ‖𝑏𝑗‖; the norms of the jth columns of the 

matrices A and B. Hence, if |
1

‖𝑏𝑗‖

𝛽𝑗

𝛼𝑗
| > |

1

 ‖𝑎𝑗‖

𝛼𝑗

𝛽𝑗
 | then 𝑥𝑗 and 𝑦𝑗 are exchanged, or, 

simplifying, if ‖𝑎𝑗‖|𝛽𝑗|
2
> ‖𝑏𝑗‖|𝛼𝑗|

2
. 

    Once all the exchanges and rearrangements have occurred, the resulting system is 

the form  

 𝐴∗𝑥∗ = 𝐵∗𝑓 + 𝑐, (21) 

 

where 𝑥∗ is the only unknown and 𝑥𝑖
∗ = 𝑥𝑖 if the 𝑖th column has not been exchanged 

and 𝑥𝑖
∗ = 𝑦𝑖 if it has. The resulting matrix-vector problem is amenable to solution by 

standard methods. For example with LU factorisation of the matrix 𝐴∗, used in the 

coded examples, this results in 

  

 𝑃𝐿𝑈𝑥∗ = 𝐵∗𝑓 + 𝑐. (22) 

 

where 𝑃 is a permutation matrix, 𝐿 is a lower-tringular matrix and 𝑈 is an upper-

triangular matrix. 

   Once the O(n3) LU factorisation has been completed, the O(n2) forward and backward 

solution process to find particular solutions can be applied any number of times. This 

is precisely the approach that will be followed in this paper; for the equations the goal 

is to ‘save’ the O(n3) LU factorisation. It can be observed in equation (22) that changing 

𝑐 and/or 𝑓 alters the left hand side and has no effect on the matrix; changes in 𝑐 and/or 

𝑓 only requires a further O(n2) computational cost to find the new solution vectors 𝑥 

and 𝑦 using the REGLS method. Hence, in the coding, the matrices 𝐿, 𝑈 and 𝐵∗ are 

stored along with the permutation information 𝑃 and the record of exchanges. 

    The algorithms for solving systems of the form (1) are implemented in Fortran (file 

GLS2.FOR for real-valued systems and CGLS2.FOR for complex-valued systems), 

Matlab (gls.m for both real- and complex-valued systems) and in Visual Basic (gls.bas 



9 

 

for real-valued systems).  The appended algorithm for finding secondary solutions, as 

explained in the last paragraph are also implemented in Fortran (REGLS.FOR for real-

valued systems and CREGLS.FOR for complex-valued systems), Matlab (regls.m for 

both real- and complex-valued systems) and in Visual Basic (regls.bas for real-valued 

systems). Test cases for the codes are implemented in the files GLS_T.FOR, 

gls_real_t.m and regls.bas for real-valued systems and CGLS_T.FOR, 

gls_complex_t.m for complex-valued systems. These files can be downloaded from the 

author’s website [8]. 

4 Test Problems and Results 

The GLS algorithm is demonstrated and tested principally in the context of the initial 

application area; within the implementation of the direct boundary element method with 

a general mixed (Robin) boundary condition. A test problem is defined and the GLS 

method is tested and the results are to be compared with alternative methods of solution. 

For this purpose the Matlab codes for solving the two-dimensional interior Laplace 

problem, introduced in the author’s previous paper [9], are adapted. 

 

4.1      Demonstration of the GLS method 

 

In order to demonstrate the GLS method, it is applied to the following 5⨯5 system 
 

(

 
 

19
93
76

−32
91
98

−92 62 −82
−17 42 26
−5 −92 −66

−31 −91 −94 13 −80
−91 11 −89 −4 −37)

 
 

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 

 

 

= 

(

 
 

−0.89
0.32
0.67

0.16
0.83
0.87

0.92 −0.79 −0.96
−0.41 −0.47 0.55
0.94 −0.37 0.58

−0.53 0.42 −0.73 −0.46 −0.12
−0.57 0.96 −0.14 0.82 0.9 )

 
 

(

 
 

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5)

 
 
+

(

 
 

0.56
−15.7
1.83
−5.38
2.7 )

 
 
, 

 
with 

8𝑥1 + 2.5𝑦1 = 14.52 
66𝑥2 − 0.3𝑦2 = −3.54 
−0.96𝑦3 = 8.64 

−53𝑥4 − 0.74𝑦4 = 0.11 
45𝑥5 = −0.9 
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having the solution  

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
=

(

 
 

−0.06
−0.04
0.08
−0.03
−0.02)

 
 

    and  

(

 
 

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5)

 
 
 =

(

 
 

6
3
−9
2
−7)

 
 

 . 

     

In the GLS method, the column norms of the matrices are evaluated. In the implementations 

of the method then 1-norm is applied. Table 1 lists the pertinent values for the system. The 

decision to exchange is taken if ‖𝑎𝑗‖|𝛽𝑗|
2
>  ‖𝑏𝑗‖|𝛼𝑗|

2
 and this is listed  in the final 

column of the Table. Once the relevant columns of the matrices are exchanged an LU 

factorisation of the matrix is computed. 

 

Table 1. The criterion for the decision to exchange columns in the test problem. 

j 𝛼𝑗 𝛽𝑗 ‖𝑎𝑗‖ 1 ‖𝑏𝑗‖ 1 ‖𝑎𝑗‖|𝛽𝑗|
2
  ‖𝑏𝑗‖|𝛼𝑗|

2
 Exchange 

1 8 2.5 310 2.98 1937.5 190.72 YES 

2 66 -0.3 323 3.24 29.07 14113.44 NO 

3 0 -0.96 297 3.14 273.715 0 YES 

4 -53 -0.74 213 2.91 116.638 8174.19 NO 

5 45 0 291 3.11 0 6297.75 NO 

 
 

Changing c and f  to 𝑐 =

(

 
 

−30.11
−9.8

−148.44
−44.46
−134.38)

 
 

, 𝑓 =

(

 
 

62.4
−75.9
0

−15.68
90 )

 
 

, using REGLS returns  

 

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
=

(

 
 

0.3
−1.3
0.4
−0.5
2 )

 
 

    and  

(

 
 

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5)

 
 
 =

(

 
 

24
−33
0
57
−18)

 
 

 . 

 

4.2      Tests with the Direct Boundary Element Method 

 

In this subsection the GLS method is used in the boundary element method with 
mixed boundary conditions. The BEM is applied to the test problem is that of the 
unit square in which the solution of Laplace’s equation is 𝜑 = 2(𝑥2 − 𝑦2). Hence 
on the left side 𝜑 = −2𝑦2, on the upper side 𝜑 = 2(𝑥2 − 1), on the right side 𝜑 =
2(1 − 𝑦2) and on the lower side 𝜑 = 2𝑥2. If this is differentiated then we have 
𝜕𝜑

𝜕𝑥
= 4𝑥 and 

𝜕𝜑

𝜕𝑦
= 4𝑦. The normal on the upper side is in the 𝑦-direction, 

𝜕𝜑

𝜕𝑛
= 4, 

the normal on the right side is in the 𝑥-direction, 
𝜕𝜑

𝜕𝑛
= 4, the normal on the lower 

side is in the negative 𝑦-direction, 
𝜕𝜑

𝜕𝑛
= 0 and the normal on the left side is in the 
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negative 𝑥-direction, 
𝜕𝜑

𝜕𝑛
= 0. The test problem is illustrated in Figure 1. The 

interior points (0.25,0.75) and (0.75,0.25) are the points at which the results will 
be investigated and are shown in Figure 1, at which points the exact solutions are 
𝜑 =-1.0 and 𝜑 =1.0. 

 
Test 1: Half Dirichlet and Half Neumann Boundary Condition. In the first test, the 
direct method involving the GLS algorithm is compared with alternative methods. 
The Dirichlet boundary condition is applied on the left and upper sides and the 
Neumann condition is applied on the other sides. Three methods are used for 
solving the resulting linear system. The first is that of exchanging the first half of 
the columns of the matrices in equation (9a). In the second test the 2𝑛 ×
2𝑛 system (3) is formed from the equations (9).  In the third test the GLS method 
is implemented. All methods gave the same solutions and these are listed in Table 
2. Results for the corresponding indirect method are given in Table 3. 

 
 
 
 
 

 
 
 

 
 

 
 

 
 

 
 
 
 

 
Fig. 1. The test problem. 

 
 

Table 2. The results from the direct solution on square test with Dirichet and Neumann boundary 

conditions 

elements point (0.25,0.75) point  (0.75, 0.25) 

32 -1.00116340579288 0.99140414916650 

64 -1.00032267851548 0.99749398360249 

𝜑 = 2(1 − 𝑦2) 

(0.75,0.25) 

𝜑 = −2𝑦2 

𝜕𝜑

𝜕𝑛
= 0 

 

(0.25,0.75) 

 𝜑 = 2(𝑥2 − 1), 𝜕𝜑
𝜕𝑛
= −4 

 

 𝜑 = 2𝑥2, 𝜕𝜑
𝜕𝑛
= 0 

 

𝜕𝜑

𝜕𝑛
= 4 

 

𝜑 = 2(𝑥2 − 𝑦2) 

0 1 
0 
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128 -1.00009049851497 0.99926478494698 

256 -1.00002558523010 0.99978267595968 

512 -1.00000729360382 0.99993525789670 

1024 -1.00000209812315 0.99998056513669 
 

 

 

 
Table 3. The results from the indirect solution on square test with Dirichet and Neumann 

boundary conditions 

elements point (0.25,0.75) point (0.75, 0.25) 

32 -1.00723281386399 0.93455909390238 

64 -1.00406088516754 0.95961702269782 

128 -1.00246190337801 0.97476365754309 

256 -1.00153247427505 0.98415050828163 

512 -1.00096190256784 0.99002659494003 

1024 -1.00060530545130 0.99371954438783 

 
 

Test 2: Robin boundary condition with strong variation in prameter values. The 
second test is based on the same solution as Test 1, but the boundary condition is 
such that  𝛼(𝒑) and 𝛽(𝒑) have values that strongly vary, in order to activate the 
GLS method fully. In this test the values  𝛼(𝒑𝒋) = 10

6𝑗/𝑛 and 𝛽(𝒑𝒋) = 10
6(𝑛−𝑗)/𝑛  

are assigned for 𝑗 = 1,2,… , 𝑛. The method based on the compound matrix (3) is 
used to verify the results from the GLS method. The results from these tests are 
given Table 4. 

 
Table 4. The results from the direct solution on the problem with a Robin boundary condition of 
strongly varying parameter. 

elements point (0.25,0.75) point  (0.75, 0.25) 

32 -0.99313784783564 1.00082851722167 

64 -0.99803407600987 1.00022336648713 

128 -0.99941881322429 1.00006375224490 

256 -0.99982435277907 1.00001885053645 

512 -0.99994612588802 1.00000570093421 

1024 -0.99998331140774 1.00000174981983 

 

5 Conclusion  

In developing the boundary element method, one of the choices is whether to base it 

on the direct or indirect integral equation formulation. It has been shown, with a 

generalised Robin boundary condition, that the indirect pathway has the advantage of 

delivering a method that is already in standard form, whereas the direct route does not. 

Hence, in such circumstances, the indirect method could be favoured. However, with 
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the GLS algorithm of this paper, the systems arising from the direct and indirect BEM 

can be solved in a similar computation time.  

 The GLS method, based on minimising the potential generated error and returning 

a standard system, has been designed. The algorithm has been implemented in three 

programming languages – Matlab, VBA, and Fortran and test harnesses have been 

included to demonstrate the working method.  

The GLS method has been included in typical implementations of the direct 

boundary element method in these languages with LU factorisation method used to 

solve the resulting standard system. It has been shown that the method automatically 

gives the same result as alternative methods that either requires user-intervention or 

doubling the dimensions of the matrices. Results from the direct and indirect boundary 

element methods have been compared.  

It may be thought that, for the BEM solution of problems with general Robin 

boundary conditions, the indirect approach should be chosen for convenience. 

However, the direct BEM is considerably more popular in the literature and hence it is 

important to develop a method that can resolve this issue. In this paper the GLS 

algorithm is shown to be easy to apply and is an 𝑂(𝑛2) addition to the systems solution 

method and hence it levels the playing field between the direct and indirect BEM in the 

quest to establish generality in the resulting software.  
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