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Quadrature Rules for Functions with a Mid-point Logarithmic 

Singularity in the Boundary Element Method based on the 

𝒙 = 𝒕𝒑 Substitution 

S. M. Kirkup1, J. Yazdani1 and G. Papazafeiropoulos2 

Abstract Quadrature rules for evaluating singular integrals that typically occur in the boundary 

element method (BEM) for two-dimensional and axisymmetric three-dimensional problems are 

considered. This paper focuses on the numerical integration of the functions on the standard 

domain [-1,1], with a logarithmic singularity at the centre. The substitution   𝑥 = 𝑡𝑝, where p(≥3) 

is an odd integer is given particular attention, since this returns a regular integral and the domain 

unchanged. Gauss-Legendre quadrature rules are applied to the transformed integrals for a 

number of values of p. It is shown that a high value for p typically gives more accurate results. 

Keywords: boundary element method, singular integral, numerical integration 

 

1. Introduction 

In this paper the problem of determining an efficient quadrature rule for and integral of 
the form 

∫ 𝑓(𝑥)𝑑𝑥,
1

−1

 

 

(1) 

in which 𝑓(𝑥) is a continuously differentiable function, except for having weak 

logarithmic singularity at its mid-point (when  𝑥 = 0), is considered. A weak logarithmic 

singularity is one in which the behaviour near the singularity is of the form 𝑓(𝑥) =

𝑂(log (|𝑥|). In this work, we look at finding near-optimal quadrature rules for the 

numerical evaluation of this class of integral. In the outcome, it is noted that the method 
proposed method may be generalised and applied to stronger singularities.  

Integrals like the one above typically occur in implementation of the two-dimensional 

(2D) boundary element method (BEM) [1-3], when the observation point lies at the 

parametric mid-point of the element or panel. The governing partial differential equation 

is reformulated as a boundary integral equation, and the latter is solved in order to 

determine unknown boundary properties. The boundary is represented by a set of 

panels, with functional representations of the properties on those panels that ascribe the 

boundary elements. By applying a suitable integral equation method, such as collocation, 
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the boundary integral equation is resolved into a linear system of equations, with each 

row of the matrices representing a geometrical line integral of each panel with respect to 
a particular boundary observation (e.g. collocation) point.  

In the boundary element method, the integrals are generally found numerically, although 

in a number of special cases the integrals can by evaluated analytically [4]. For two-

dimensional problems, the logarithmic singularity occurs when the observation point lies 

on the panel over which the integration is applied. For constant elements, where the 

functional representation of boundary properties is a constant value on each panel, the 

diagonal components of the matrices correspond to singular integrals. All of the other 

integrals are regular and are therefore amenable to standard quadrature methods, often 

Gauss-Legendre quadrature rules for their optimal efficiency. However, some panels are 

close to the observation point, and the corresponding integral are regular, but are also 

strongly-varying, and some researchers also apply special treatment to these nearly-

singular integrals [5]. 

Much of the aforementioned story is the same for three-dimensional problems, except 

that, in this case, the bounding surface is represented by a mesh, made up of panels. 

However, in 3D we have 𝑂 (
1

𝑟
) like singularities (where r represents the distance between 

the observation point and the point on the panel). There have been a number of papers 

addressing the problem of integrating functions like this for general 3D problems in the 

BEM, both numerically [6] and analytically [7], although this is outside the scope of this 

paper. However, for the particular class of axisymmetric 3D problems, the first azimuthal 

integration over the panel results again in a logarithmic 𝑂(log 𝑟) singularity in the 

remaining integral along the generator of the panel and for these problems this work is 

applicable.  

In the previous work on the boundary element method by the first author [8-13], typical 

elements that are applicable include straight-line panels for 2D problems in which the 

boundary function approximated by a constant, with the observation points located at 

the centres of the panel. Similarly, axisymmetric problems are modelled by constant 

elements and the panels are equivalent to conic sections. Typical panels for 

approximating the boundary in 2D and axisymmetric 3D are illustrated in Figure 1, with 

the node at the (parametric) centre of the straight-line panel and at the centre of the 

generator on a truncated conical panel. Hence a 2D panel or the generator of a 3D 

axisymmetric panel can be mapped onto the domain [-1, 1], with the mid-point of the 

panel mapping to zero. Although the problem posed in this paper is restrictive in that the 

singularity is defined to be at the parametric centre of the panel, this is also the most 
common case in practice, and this is all that is required for these simple elements. 

 

 

 

 

Figure 1. A straight-line panel (2D) and a truncated conical panel (3D). 



 

The principles underlying the method choice include the usual one of efficiency; that of 

accuracy in relation to the number of quadrature points or function evaluations. 

However, the other principle is that the method must be a practical method since it must 

be typically included into the BEM as an ‘automatic computation’ of the singular integrals 

that arise therein. In this paper, the numerical integration method is developed through 

a simple power substitution focussed at the singularity. This sort of transformation is 

similar to the technique of transforming the integrand by a polynomial substitution in 

Telles [14], except the problem considered therein is more general in the sense that the 

singularity may be located anywhere within the domain (-1,1) and the substitution was 

with a general cubic. The concept is also similar to the method of the first author [8-13], 

except in that work the domain of the integration was [0,1] with the singularity at zero 

and the method was applied on either side of the mid-point, as a composite integral, and 

summed in order to determine the integral. However, in general, composite integrals are 

less efficient.  

In this paper, integration through the substitution 𝑥 = 𝑡𝑝 with 𝑝 taking odd integer values 

and Gauss-Legendre quadrature applied to the resulting integral. This method of 

transformation is preferred because of its effectiveness and mathematical and 

computational simplicity. The selection of the value of 𝑝 is explored by applying the 

method to test problems. The objective is to obtain guidance on the value of 𝑝 that returns 

a quadrature formula that is close to optimal for the numerical integration of the singular 
functions occurring typically in the BEM. 

This paper is organised as follows. In Section 2, the logarithmic integrals are placed in the 

context of the boundary element method, where they typically arise. Various methods of 

treating singular integrals are considered in Section 3, with a particular focus on the 𝑥 =

𝑡𝑝 substitution. In Section 4 methods based on the 𝑥 = 𝑡𝑝 substitution are applied to test 
problems and results are summarised and conclusions are given in Section 5. 

 

2. The Boundary Element Method and Singular Integration 

The motivation for exploring the numerical evaluation of singular integrals in this work 

is in that they arise in the boundary element method. The BEM is a computational 

technique that has developed from the reformulation of elliptic partial differential 

equations as boundary integral equations. The method is the computational result of 

solving the partial differential equations via the discretisation of the boundary integral 
equations.  

In principal, the boundary element method has the significant advantage over ‘domain 

methods’ - such as the finite element method and the finite difference method – in that it 

only requires an elemental decomposition of the boundary, rather than the full domain. 

Hence, when the boundary element method is applicable, it typically requires 

significantly fewer elements than the corresponding domain methods, there is less to 

mesh and there is a potential reduction in computation time. However, the boundary 

element method is not without its challenges, and not the least of these is the evaluation 



of singular integrals. Although singular integrals of the same form occur in all application 

areas of the BEM, in order to motivate the need for such methods and to study their place 

within the BEM, in this paper the two related partial differential equations studied by the authors 

are considered; the exterior Laplace and Helmholtz equations [3, 8-13].  

2.1 Typical Boundary Integral Equations (Exterior Helmholtz and Laplace 
Problems) 

The example of a partial differential equation that can be solved by the boundary element 
method is the exterior Helmholtz (reduced wave (acoustic)) equation: 

∇2 𝜑(𝐩)  +  𝑘2𝜑(𝐩) =  0    (𝐩 ∈ 𝐸) , (2) 
 

where E is a domain exterior to a closed boundary 𝑆, 𝜑 is the potential and 𝑘 is the 

wavenumber. The domain is illustrated in Figure 2. 

 

Figure 2. An illustration of a boundary 𝑆 and the exterior domain E . 

For example, the elementary direct formulation of the Helmholtz equation can be 

reformulated as the following integral equation: 

∫
𝜕𝐺𝑘(𝒑, 𝒒)

𝜕𝑛𝑞
𝑆

𝜑(𝒒)𝑑𝑆𝑞 −
1

2
  𝜑(𝒑) = ∫ 𝐺𝑘(𝒑, 𝒒)

𝑆

𝜕𝜑(𝒒)

𝜕𝑛𝑞
𝑑𝑆𝑞   (𝒑 ∈ 𝑆), 

 

 

(3) 

where 𝐺𝑘 represents an appropriate Green’s function with 

𝐺𝑘(𝒑, 𝒒) =
𝑖

4
 𝐻0

(1)
(𝑘𝑟) 

(4) 

 

in two dimensions and  

𝐺𝑘(𝒑, 𝒒) =
1

4𝜋
 
𝑒𝑖𝑘𝑟

𝑟
 

(5) 

 



in three dimensions, with 𝒑𝜖𝑆, 𝒓 = 𝒑 − 𝒒,  𝑟 = |𝒓| and 𝒏 is the unit outward normal to the 

boundary. 𝐻0
(1)

 is the Hankel function of the first kind of order zero . The ‘
1

2
’ in equation 

(3) is only true if the boundary 𝑆 is smooth at 𝒑, as it is in the boundary element method 

discussed here, in which 𝒑 takes the values of the centre of the straight-line panels in 2D 

or on the centre of the generator of the axisymmetric panels in 3D, as illustrated in Figure 
1. 

Laplace’s equation is the special case of the Helmholtz equation (2) with 𝑘 = 0, which can 

be reformulated as the boundary integral equation (3), with the Green’s function 𝐺𝑘 

replaced by 𝐺0. The Green’s function for Laplace’s equation are defined as 

𝐺0(𝒑, 𝒒) =
−1

2𝜋
 ln(𝑟) 

(6) 

 

in two dimensions and  

𝐺0(𝒑, 𝒒) =
1

4𝜋
 
1

𝑟
 

(7) 

 

in three dimensions. The Green’s functions determine the form of the weak singularity, 
as discussed earlier in this paper. 

2.2 Boundary Element Method and Singular Integrals 

The boundary element method is derived from the boundary integral equation by 

approximating and representing the boundary 𝑆 as a set of n panels ∆𝑆1, ∆𝑆2, … , ∆𝑆𝑛 and 

the boundary functions φ and 
𝜕𝜑

𝜕𝑛
 are approximated using characteristic functions on each 

panel, defining the elements. The most straightforward integral equation method to apply 

is that of collocation. When this is applied to the collocation point 𝒑𝑙 , the discrete 
analogue of the boundary integral equation (3), is as follows: 

∑ 𝜑𝑗

𝑛

𝑗=1

∫
𝜕𝐺𝑘(𝒑𝑙, 𝒒)

𝜕𝑛𝑞
∆𝑆𝑗

𝑑𝑆𝑞 −
1

2
  𝜑(𝒑) = ∑ 𝑣𝑗

𝑛

𝑗=1

∫ 𝐺𝑘(𝒑𝒍, 𝒒)

∆𝑆𝑗

𝑑𝑆𝑞 . 

 

(8) 

 

where 𝜑𝑗 = 𝜑(𝒑𝑗) and 𝑣𝑗 =
𝜕𝜑(𝒑𝑗)

𝜕𝑛
 . 

Forming the above equation for all collocation points returns a system of n simultaneous 

linear equations that is written as a linear system of equations in matrix-vector form 

(𝑀𝑘 −
1

2
) 𝜑 = 𝐿𝑘𝑣 

 

(9) 



where [𝐿𝑘]𝑗𝑙 = ∫ 𝐺𝑘(𝒑𝒍, 𝒒)
∆𝑆𝑗

𝑑𝑆𝑞, [𝑀𝑘]𝑗𝑙 = ∫
𝜕𝐺𝑘(𝒑𝑙,𝒒)

𝜕𝑛𝑞∆𝑆𝑗
𝑑𝑆𝑞, 𝜑 = [

𝜑1

:
𝜑𝑛

] and 𝑣 = [

𝑣1

:
𝑣𝑛

],  

where 𝐿𝑘 and 𝑀𝑘are matrices that are the discrete equivalent of the integral operators in 

(8). The vectors 𝜑 and 𝑣 list the values of φ and 𝑣 at the collocation points, either 

predetermined by the boundary condition or an approximation to the same following the 
solution of the system (9). 

2.3 Practical Aspects of the BEM 

The components of the matrices 𝐿𝑘 and 𝑀𝑘 are normally determined by numerical 

integration. The integrands that make up the components of the 𝑀𝑘 matrix are regular 

functions. The integrands that make up all but the diagonal components of the 𝐿𝑘 matrix 

are also regular. However, the integrands corresponding to the diagonal components of 

the 𝐿𝑘 matrix have a 𝑂(log(𝑟)) singularity in 2D and O(1/r) singularity in 3D at the 

corresponding collocation point. Hence the number of integrations typically required in 

the boundary element method is 𝑂(𝑛2), where 𝑛 is the number of elements, whereas the 

number of singular integrals is 𝑂(𝑛). This is an important factor in the design of the 

boundary element method; efficient and accurate evaluation of the singular integrals is 

important, but the burden is unlikely to be significant in terms of the overall 

computational cost of the boundary element method.  There are also codes that 

parallelise the numerical integration method [15], which could also reduce the computer 
time required to calculate the BEM matrices. 

It is well known that elementary boundary element methods for the solution on the 

exterior Helmholtz equation are unreliable for some values of 𝑘, dependent on the 

domain and nature of the boundary condition [16]. Robust integral equation formulations 

have been derived, not least the Burton and Miller formulation [17], based on a 

combination of the boundary integral equation (7) and an its derivative. Unfortunately, 

this also introduces hypersingular integrals that also require special treatment [18]. 

Similarly, if the boundary element method is applied to thin structures then this also 

introduces the same hypersingular operator [19-21]. For the simple flat straight line and 

triangular panels used in the first author’s previous work, simple formulae were 

developed for the analytic integration of singular and hypersingular operators [11,12]. 

However, it is the treatment of the weakly singular integrals that correspond to the 

diagonal components of the 𝐿𝑘 (or 𝐿0) matrix in the boundary element system (9) that 
are considered in the main in this paper. 

The singular integrals corresponding to the 𝐿𝑘 (or 𝐿0) operator, with the singularity at 

the paramtric centre in 2D can be transformed onto [-1,1] and they are then of the form 

(1). In axisymmetric 3D, the integrations are first carried outin the azimuthal direction, 

leaving a singularity in the integral along the generator, at the parametric centre, and this 

can also be transformed on to a problem of the form (1). 

 

 

 



3. Treatment of the singular integrals 

In this Section the various method for evaluating the singular integrals are reviewed. Let 
us first consider the position of the singularity. In this work, we have placed the 
singularity at the centre of the domain, in this case the standard interval [-1, 1]. In other 
contributions [22] the same domain is used but the singularities are placed at both ends 
and Gauss-Jacobi rules are applied. In the previous work of the first author [8-13] the 
domain [0, 1] is used and the singularity is placed at zero. The work of Telles [14] 
generalises the concept in allowing the singularity to be anywhere within the domain. 
 
In variable integration, wherever the singularity is, it is only typically integrable if it is of 
logarithmic type or of algebraic type with an index greater than -1. For example, in the 
case of the interval adopted in this work [-1, 1] with the singularity at the centre, typical 
integrable singularities are of the logarithmic type 𝑂(log |𝑥|) or algebraic type 𝑂(|𝑥|𝛼) 
where 0 > 𝛼 > −1. The logarithmic type of singularity is weaker than the algebraic type 
and hence, although the topic of this work is the treatment of logarithmic singularities, 
methods that have been developed for integrating algebraic singularities can also be 
applied in the context of logarithmic singularities.  
 
3.1 Ignoring the singularity 
 
Given the general effectiveness in numerical integration methods such as Gaussian 
quadrature, the singularities are generally of the weakest form and the fact that the 
computation time for computing the integrals is unlikely to be a critical factor in the 
boundary element method lends weight to the argument that the singularity should be 
ignored.  
 
The technique of ignoring the singularity in numerical integration has been the subject of 
research [23, 24]. In Kirkup [8,9] it is shown that the integration of  ln 𝑥 with 8, 16 and 32 
point Gaussian quadrature rules gives quadrature errors of 8.8(-3) (8.8×10-3), 2.3(-3) and 
6.0(-4) respectively; doubling the number of quadrature points reduces the error by a 
factor of four. For the original problem (1) it is found that applying the Gaussian 
quadrature straightforwardly gives an error of 4.9(-1) for the 4-point rule, 2.5(-1) for the 
8-point rule, 1.7 (-1) for the 12-point rule and 1.3(-1) for the 16-point rule; very poor 
convergence. 
 
It can reasonably be concluded that ignoring the singularity is a technique that is worthy 
of consideration in the context of the boundary element method. However, it should be 
expected that a rule with a high number of quadrature points would be required to 
maintain reasonable accuracy. If the singularity is within – rather than at the extremities 
of – the domain of integration, then splitting the domain at the singularity and applying a 
composite rule would also seem to be necessary. This approach would have a marginal 
impact on computer processing time in the BEM, but it would lack finesse.  
 
 
3.2 Product Integration 
 
If the singularities can be characterised by another function, e.g. 𝑓(𝑥)~ 𝑂(𝑤(𝑥)), where 
the singularity is located at 𝑥 = 0, then a product integration method is appropriate, in 



which the characteristic singularity 𝑤(𝑥) is effectively absorbed into the quadrature rule. 
For example, Gaussian-Jacobi quadrature rules are available and are applicable when 
there is an algebraic singularity at the extremes of the range of integration [22].  
Anderson [25] derives quadrature formulas with a weighting function of − ln 𝑥 on [0,1].  
 
Test Problem 
 
By differentiating 𝑥 ln(sin 𝑥), the integrand in the integral below is obtained (for 
sin 𝑥 ≥ 0) 

∫ 𝑥 cot 𝑥 +  ln (sin 𝑥) 𝑑𝑥 = 𝑥 ln(sin 𝑥) + 𝑐 , 

 

(6a) 

and noting that the function has an 𝑜(ln 𝑥) singularity at 𝑥 = 0. 
 
This gives a useful test problem in the domain [0,1] 
 

∫ 𝑥 cot 𝑥 +  ln (sin 𝑥) 𝑑𝑥 = ln(sin 1) =

1

0

− 0.1726037463  (10 d. p. ). 

 

(6b) 

Reflecting the integrand from the positive to the negative domain give as test problem on 
the original domain 

∫ |𝑥| cot |𝑥| +  ln (sin |𝑥|) 𝑑𝑥 = 2 ln(sin 1) =

1

−1

− 0.3452074925  (10 d. p. ) , 

 

(6c) 

which also includes the 𝑜(ln |𝑥|) singularity, specified in the original problem (1). 

Applying the eight-point Gauss rule with the −ln 𝑥 weighting in [25] gives a relative error 

of 3%. Ideally, for the test problem (1) a product integration rule for  ∫ ±ln |𝑥| 𝑔(𝑥)𝑑𝑥
1

−1
 

could be a useful way forward. In order to use the same points for the other operators, 

the integrands could be divided by ln |𝑥|. 

 
3.3 Subtracting out the singularity 
 
‘Subtracting out’ the singularity is a popular method of treating the singular integrals in 
the boundary element method. The technique simply involves splitting the integrand 
𝑓(𝑥), so that it is the sum of two functions, one that is singular and one that is regular. For 
example, let 𝑓(𝑥) ∼ 𝜓(𝑥) near to the singularity; writing 𝑓(𝑥) = 𝜓(𝑥) + [𝑓(𝑥) − 𝜓(𝑥)] 
and the latter integral may be regular [26].  
 
Clearly this in itself does not entirely solve the problem since one singular integral has 
been replaced by another. However, there are two reasons for subtracting out the 
singularity. The first is that ∫ 𝜓(𝑥) 𝑑𝑥 could be evaluated once-and-for-all and then re-
used with different 𝑓(𝑥) functions. The second reason is that it is sometimes possible to 
find an analytic expression for ∫ 𝜓(𝑥) 𝑑𝑥. In such cases the methods for treating singular 
functions considered in this section may need to be applied to evaluate ∫ 𝜓(𝑥) 𝑑𝑥. 
 



Subtracting out the singularity with test problem (6b) 
 
The method of subtracting out a singularity that can be evaluated analytically can be 
illustrated on the test problem (6b): 
 

∫ 𝑥 cot 𝑥 +  ln (sin 𝑥) 𝑑𝑥 =

1

0

∫ 𝑥 cot 𝑥 +  ln (sin 𝑥) − ln 𝑥  𝑑𝑥 − 1

1

0

, 

 
where the final ‘1’ is obtained by integrating the subtracted-out function ln 𝑥. Applying an 
eight-point Gaussian quadrature to the regular integral above gives less than 1×10-12% 
error. Similarly, for the integral with the singularity at the centre (6c), the subtraction 
gives the following regular integral: 

∫ |𝑥| cot |𝑥| +  ln (sin |𝑥|) 𝑑𝑥 = ∫ |𝑥| cot |𝑥| +  ln (sin |𝑥|)  − ln|𝑥| 𝑑𝑥 − 2

1

−1

1

−1

 . 

 

 

The In this case the application of an 8-point Gaussian quadrature rule returns an error 
of 5×10-10%. A graph of the original integrand for the test function and the integrand with 
the singularity subtracted out is shown in Figure 3, indicating that the remaining function 
is regular. 
 

 
 

Figure 3.            |𝑥| cot |𝑥| +  ln (sin |𝑥|) 𝑑𝑥,              |𝑥| cot |𝑥| +  ln (sin |𝑥|)  − ln|𝑥| 𝑑𝑥. 
 
 
Subtracting out the singularity in the BEM for the 2D Helmholtz Equation 
 
Returning to original form of the test problem (1), the typical boundary element integrals 
(8), the integrands are functions of distance from the collocation point. A good example 
of this is with the Helmholtz operators considered earlier; if the discrete Laplace 
operators are computed once-and-for all, then this subtracted out value could be use on 
the corresponding Helmholtz problems for each chosen value of k. For example, in (9), 
the singularity is subtracted out as follows, 



∫ 𝐺𝑘(𝒑𝒍, 𝒒)

∆𝑆𝑗

𝑑𝑆 = ∫ 𝐺0(𝒑𝒍, 𝒒)

∆𝑆𝑗

𝑑𝑆 +  ∫ 𝐺𝑘(𝒑𝒍, 𝒒) − 𝐺0(𝒑𝒍, 𝒒)

∆𝑆𝑗

𝑑𝑆. 

 

For example there are analytic expressions for ∫ 𝐺0(𝒑𝒋, 𝒒)
∆𝑆𝑗

𝑑𝑆 in the case of straight-line 

or planar triangular panels [11,12]. For the two-dimensional problem, 
 

𝐺𝑘(𝒑𝒍, 𝒒) − 𝐺0(𝒑𝒍, 𝒒) =
𝑖

4
 𝐻0

(1)(𝑘𝑟) −  
−1

2𝜋
 ln(𝑟). 

 

=
𝑖

4
 (𝐽0(𝑘𝑟) + 𝑖𝑌0(𝑘𝑟)) +  

1

2𝜋
 ln(𝑟) 

 

= −
1

4
𝑌0(𝑘𝑟) +  

1

2𝜋
 ln(𝑟) +

𝑖

4
 𝐽0(𝑘𝑟), 

 
where 𝐽0 and 𝑌0 are Bessel functions. The Bessel functions are real-valued and hence the 
equation above gives the subtracted-out function in real and imaginary parts. The graphs 
in figure 4 for 𝑘 = 1, assuming the panel lies on [-1,1] and the collocation point is at the 
centre. The graphs indicate that – once the singularity is subtracted out - the functions 
are regular. 

 
Figure 4.             = −

1

4
𝑌0(|𝑥|) + 

1

2𝜋
 ln(|𝑥|),                

1

4
 𝐽0(|𝑥|). 

 
 
Subtracting out the singularity in the BEM for the axisymmetric Helmholtz Equation 
 
Two examples of axisymmetric problems are considered in order to observe the nature 
of  the remaining function on the generator, once the Green’s function for the 3D 

Helmholtz equation ( 𝐺𝑘 =
𝑒−𝑖𝑘𝑟

4𝜋𝑟
 ) is integrated over azimuthal angles using the H3ALC 

code [3,11,12], with 𝑘 = 10 and with 𝐺0 subtracted out. In Figure 5a the panel is parallel 



to the axis and in Figure 5b the panel is at right angles to the axis, and in both cases the 
remaining function is apparently regular. 
 

 
 
 

Figure 5a. Generator function for [1,0]-[1,1]:                real part,              imaginary part. 
 

 
 

Figure 5b. Generator function for [0,0]-[1,0]:                real part,              imaginary part. 
 
 
 



3.4 Substitution or Transformation 
 
The main purpose of this paper is to develop techniques based on power substitution, as 
initiated in the Introduction, equations (2-4). Generally, the main purpose of the 
substitution is to transform the integrand from being a singular function to a regular 
function, which is then amenable to standard quadrature. In this section the context of 
using substitution ahead of applying quadrature is reviewed. 
 
The fundamental basis of this method is substituting one function for 𝑥. In general let 𝑥 =

𝑔(𝑡) and hence 
𝑑𝑥

𝑑𝑡
= 𝑔′(𝑡), and hence with suitable changes of limits we may write 

 

∫ 𝑓(𝑥)𝑑𝑥
∗

∗

= ∫ 𝑓(𝑔(𝑡))𝑔′(𝑡)𝑑𝑡
∗

∗

, 

 
with the rationale that the transformed integrand is more suited to standard quadrature. 
In this section we consider methods based on the transformation of the integral.  
 
Erf rule 
 
The erf rule is based on the substituting the error function (erf) for 𝑥 , with any possible 
singularities corresponding to the argument of the error function being either ±∞ and 
hence it is applicable to an end-point rather than a mid-point singularity. The method was 
put forward in the area of the boundary element solution of acoustic/Helmholtz 
problems by Burton [27]. Consider the problem 

∫ 𝑓(𝑥)𝑑𝑥

1

0

 

 

with the singularity remaining at 𝑥 = 0. The substitution 𝑥 =
1

2
erfc(𝑡), transforms the 

singularity to −∞ where erfc is the complement of the error function. As 
𝑑𝑥

𝑑𝑡
=

1

√𝜋
 𝑒−𝑡2

 it 

follows that 
 

∫ 𝑓(𝑥)𝑑𝑥
1

0

=
1

√𝜋
∫ 𝑓 (

1

2
erfc(𝑡)) 𝑒−𝑡2

𝑑𝑡
∞

−∞

. 

 
The integrand is now regular and because of the fast decay of the Gaussian the integrand 

is only significant in a narrow interval of 𝑡, the integration range can be severely 

truncated in practice. This, alongside the finding that functions with a Gaussian envelope 

have been found to be approximates very accurately by the trapezium rule [28] results in 

the erf rule being an efficient method for integrating singular functions [29, 30]. For 

example with the test problem (6b) the erf rule with integration points at 𝑡 =

−3, −2.5, −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, 2.5, and 3 (13 points) has a relative error of 

1.1(-4).  

 

 



Polynomial Transformation 

Most simply, a polynomial transformation is achieved by a substitution or power 

transformation of the form 

𝑥 = 𝑡𝑝 , 
𝑑𝑥

𝑑𝑡
= 𝑝𝑡𝑝−1 (7) 

gives the following 

∫ 𝑓(𝑥) 𝑑𝑥
1

−1

= ∫ 𝑝𝑡𝑝−1𝑓(𝑡𝑝) 𝑑𝑡
1

√−1
𝑝

 , 

 

(8) 

in which the location of the former logarithmic singularity is now at 𝑡 = 0, but for a large 

enough value for 𝑝 (and for a logarithmic singularity this is for 𝑝 > 1) the new integrand 

is continuous.  However, the lower limit is only practical if 𝑝 is also an odd integer, so that 

the lower limit is -1, and in this case the domain of integration is usefully unchanged by 
the transformation, as shown in equation (9): 

∫ 𝑓(𝑥) 𝑑𝑥
1

−1

= ∫ 𝑝𝑡𝑝−1𝑓(𝑡𝑝) 𝑑𝑡
1

−1

  ( 𝑝 is an odd integer, 𝑝 ⩾ 3). 

 

(9) 

The concept of transforming the integral so that both a regular integrand was returned 

and the domain was unchanged is developed in Telles [14], in which a cubic polynomial, 

rather than a simple power substitution, is applied. In the first author’s previous work 

the weak singularities in three-dimensional axisymmetric case are handled by the 

splitting the integral at the singularity and applying the transformation 𝑥 = 𝑡2 on the [0,1 
] domain and applied either side of the singularity [8,9,11,12].  

Notes 

The transformations of the integral outlined are the ones that are most often used in the 

boundary element method. Clearly there are a range of substitutions that can be applied 

for the same purpose. If the singularity is within the domain then the methods based on 

the erf rule requires the interval to be split at the singularity and a method to be applied 

either side. This was also the case with the power method in some cases, such as the  𝑥 =

𝑡2 substitution discussed earlier. If the domain needs to be split then this means that a 

composite quadrature is effectively being applied, and this is often going to be less 

efficient than a quadrature rule designed for the full domain. Telles [14] suggests the 

substitution of a cubic and maintaining the same domain of [-1, 1] following 

transformation. If the singularity is in the centre of the domain, as in the objective 

problem in this paper, then this is achieved by simplifying the method in Telles to 𝑥 = 𝑡3.  

4. Results for 𝑥 = 𝑡𝑝 

In this section numerical integration methods that arise through the power substitution 

𝑥 = 𝑡𝑝 in the integral (1) with Gauss-Legendre quadrature rules applied to the 

transformed integral. These methods are employed to find approximations to the 

integrals of the test problems of 𝑓(𝑥) = ln |𝑥| and 𝑓(𝑥) = |𝑥| cot |𝑥| +  ln (sin |𝑥|) . Both 



test problems have an 𝑜(log (|𝑥|)) singularity in the centre of the domain of integration 

[−1,1]. All Gauss-Legendre rules were generated using the Keisan on-line calculator [31]. 

Gaussian quadrature rules with an even number of points avoid having a point at the 

centre of the domain (where the singularity is located) and so standard 8, 12 and 16 point 

Gauss-Legendre rules and a range of odd values of 𝑝 are applied in the first case. Given 

that the transformed integrand is zero at the centre (for 𝑝 ≥ 3) the central point can be 

ignored and hence 5-, 9-, 13- and 17-point rules can be applied as 4-, 8-, 12- and 16-point 

rules.  A spectrum of results are obtained, from which decisions about the choice of the 

near-optimal value of the power 𝑝 may be explored. 

Let the Gauss-Legendre with 𝑚 points be defined on [-1,1] and have weights 𝑤𝑗  and 

abscissae 𝑡𝑗  for 𝑗 = 1,2, … 𝑚. Transforming the integral through the substitution 𝑥 = 𝑡𝑝 

(9) and applying the Gauss-Legendre quadrature rule to the transformed integral returns 

the following method of approximation: 

∫ 𝑓(𝑥) 𝑑𝑥
1

−1

= ∫ 𝑝𝑡𝑝−1𝑓(𝑡𝑝) 𝑑𝑡
1

−1

 ≈ ∑ 𝑝 𝑤𝑗  𝑡𝑗
𝑝−1𝑓(𝑡𝑗

𝑝)
𝑚

𝑗=1
. 

The quadrature rule is now in the standard form with weights 𝑊𝑗 = 𝑝 𝑤𝑗  𝑡𝑗
𝑝−1 and 𝑇𝑗 =

𝑡𝑗
𝑝 . Standard Gauss-Legendre quadrature rules were generated using the on-line 

calculator [31].  

4.1 Gauss-Legendre rules with an even number of points 

The results from applying the method to the test problems are listed in Tables 1 and 2 for 

various values of 𝑝 and for 4-, 8-, 12- and 16-point Gaussian Legendre rules applied to the 

resulting integral.  The smallest error for each Gaussian rule with the various  p-values is 

given in bold, indicating the optimum value for p. 

p 4-point 8-point 12-point 16-point 
1 4.9(-1) 2.5(-1) 1.7(-1) 1.3(-1) 
3 1.6(-1) 2.1(-2) 6.6(-3) 2.9(-3) 
5 1.0(-1) 2.9(-3) 4.0(-4) 9.7(-5) 
7 1.8(-1) 7.2(-4) 4.1(-5) 5.6(-6) 
9 5.6(-1) 3.2(-4) 7.0(-6) 5.1(-7) 
11 8.3(-1) 2.5(-4) 1.9(-6) 7.1(-8) 
13 9.2(-1) 3.9(-4) 7.6(-7) 1.4(-8) 
15 8.9(-1) 1.5(-3) 4.6(-7) 4.0(-9) 
17 7.5(-1) 1.3(-2) 4.2(-7) 1.5(-9) 
19 5.5(-1) 3.9(-2) 6.1(-7) 8.1(-10) 
21 3.0(-1) 8.2(-2) 1.5(-6) 5.8(-10) 
23 5.2(-2) 1.4(-1) 8.8(-6) 5.7(-10) 
25 2.0(-1) 2.1(-1) 1.3(-4) 8.0(-10) 

Table 1. Numerical error in ∫ ln |𝑥|  𝑑𝑥
1

−1
 following 𝑥 = 𝑡𝑝 substitution and Gauss rule. 

 

 

 



p 4-point 8-point 12-point 16-point 
1 4.9(-1) 2.6(-1) 1.7(-1) 1.3(-1) 
3 1.4(-1) 2.1(-2) 6.6(-3) 2.9(-3) 
5 2.3(-1) 3.2(-3) 4.0(-4) 9.7(-5) 
7 3.7(-2) 2.4(-3) 2.1(-5) 5.4(-6) 
9 3.9(-1) 1.4(-2) 1.3(-4) 2.4(-6) 
11 8.0(-1) 3.2(-2) 4.9(-4) 1.0(-5) 
13 1.1(-1) 5.7(-2) 1.5(-3) 3.8(-5) 
15 1.3 8.4(-2) 3.7(-3) 1.1(-4) 
17 1.3 1.0(-1) 7.4(-3) 2.5(-4) 
19 1.3 1.0(-1) 1.3(-2) 5.3(-4) 

Table 2. Numerical error in ∫ |𝑥| cot |𝑥| +  ln (sin |𝑥|)  𝑑𝑥
1

−1
 following 𝑥 = 𝑡𝑝 substitution 

and even Gauss rule. 

4.2 Discussion 

The most important point to be taken from the results in the tables above is that the 

optimal power substitution is significantly larger than those that have been used 

previously (ie p=2 or 3, as discussed). The optimal value of p increases significantly with 

the number of Gauss points for the ln |𝑥| test problem, but much more steadily for the 

more-realistic test problem in Table 2. In Table 1 the p=1 is equivalent to ignoring the 

singularity, as discussed in Subsection 3.1. 

The Gauss-Legendre points 𝑡𝑗  for 𝑗 = 1,2, … 𝑚 are spread fairly evenly on [-1,1]. The effect 

of the power transformation is to cluster the quadrature points 𝑇𝑗  closer to the singularity 

at zero as p becomes larger and the weights 𝑊𝑗  corresponding to the clustering points are 

correspondingly smaller with proximity to the singularity. For example, for one of the 

methods that performs well is the 16-point rule with p=9 and the data associated with 

this method is shown in Table 3. 

Gauss-Legendre rule Transformed rule following 𝑥 = 𝑡9 substitution 

points 𝑡𝑗  weights 𝑤𝑗  points 𝑇𝑗  weights 𝑊𝑗  

±0.09501250984 0.1894506105 ±0.0000000006309967386 0.00000001132360842 
±0.2816035508 0.182603415 ±0.00001113635686 0.0000649914786 
±0.4580167777 0.1691565194 ±0.0008870181019 0.002948372458 
±0.6178762444 0.1495959888 ±0.01312542828 0.02860055385 
±0.7554044084 0.1246289713 ±0.08009688646 0.1189317034 
±0.8656312024 0.09515851168 ±0.272895342 0.2699935385 
±0.9445750231 0.06225352394 ±0.5985881541 0.3550570253 
±0.989400935 0.02715245941 ±0.9085542159 0.2244038037 

Table 3. The 16 point rule. 

As the weights associated with the points close to the singularity are ‘small’ then a further 

adjustment to the method is to delete these points since they contribute very little to the 

integral and they require function evaluations. This is particularly effective when the 

power substitution p is large. For example, simply deleting the two points closest to the 

singularity returns an error of 2.8(-6), compared to the error of 2.4(-6) when the points 

are included; a marginal loss of accuracy. In order that the weights sum to 2 the weights 



for deleted points may be added with the ones nearest to them: in this case the error is 

2.6(-6). 

4.3 Gauss-Legendre rules with an odd number of points 

Following on from the discussion in the previous Subsection and the introduction to this 

Section, if the quadrature rule has a point in the centre of the domain then for weighting 

is zero for 𝑝 ≥ 3 and that point can be deleted. In Table 4 5-, 9-, 13- and 17-point Gauss-

Legendre rules are applied, deleting the mid-point so that the actual numbers of points 

are 4, 8, 12 and 16.  

p (5-1)-point (9-1)-point (13-1)-point (17-1)-point 
3 1.1(-1) 2.0(-2) 7.0(-3) 3.2(-3) 
5 7.7(-3) 1.6(-3) 2.8(-4) 7.6(-5) 
7 1.4(-1) 1.1(-3) 3.0(-5) 3.8(-6) 
9 1.2(-1) 3.9(-3) 4.1(-5) 1.0(-6) 
11 5.5(-2) 1.2(-2) 1.8(-4) 4.1(-6) 
13 3.1(-1) 2.5(-2) 5.6(-4) 1.6(-5) 

Table 4. Numerical error in ∫ |𝑥| cot |𝑥| +  ln (sin |𝑥|)  𝑑𝑥
1

−1
 following 𝑥 = 𝑡𝑝 substitution 

and odd Gauss rule. 

4.4 Test Problem 

In order to demonstrate the improvements in efficiency through using the rules a test 

problem is set up comparing the power transformation with 𝑝 = 3 with those suggested 

by the results in Table 4. The test problem is that of calculating ∫ 𝐺0(𝒑, 𝒒)
∆𝑆

𝑑𝑆 for an 

axisymmetric three-dimensional problem (𝐺0(𝒑, 𝒒) =
1

4𝜋𝑟
, where 𝑟 = |𝒑 − 𝒒|). The panel 

∆𝑆 is generated by (𝑟, 𝑧) end-point coordinates  (0,1)  and (1,1). The point 𝒑 = (0.5,1) is 

at the centre of the generator, the location of the singularity. The results with the optimal 

values of power 𝑝 are compared with 𝑝 = 3, in Table 5. 

Number of points p=3 p=’optimal’ 
4 0.458521 0.471231 (p=5) 
8 0.465498 0.467126 (p=7) 

12 0.466553 0.467107 (p=7) 
16 0.466854 0.467107 (p=9) 
32 0.467072 0.467107 (p=9) 

Table 5. Results from integrating 𝐺0 =
1

4𝜋𝑟
 over an axisymmetric panel using the 𝑥 =

𝑡𝑝substitution with 𝑝 = 3 compared to its ‘optimal’ value. 

 

5. Conclusion 

The handling of singular integrals is a continual area of enquiry in the implementation of 

the boundary element method. This paper explores this again, but for integrating over 

panels in two-dimensional and axisymmetric three-dimensional problems and with the 

singularity lying at the parametric centre of the panel in 2D and of the generator in 

axisymmetric 3D. The issue of singular integration in the boundary element method is 



therefore considered in one of the simplest forms; with a logarithmic singularity (~ ln 𝑟) 

for 2D problems, or when the integral is resolved onto the generator in axisymmetric 3D. 

Hence the subject of this paper; the numerical integration of functions with a mid-point 

logarithmic singularity is one of the most typical problems within the boundary element 
method. 

The boundary element method is considered in the context of its solution of Laplace’s 

equation and the Helmholtz equation. It was discussed that within the BEM, generally 

there are 𝑂(𝑛2) regular integrals and 𝑂(𝑛) singular integrals and so in that context the 

computational cost of the evaluating singular integrals is unlikely to have a significant 

impact on the running time of the BEM. However, it is still useful to have practical, robust 

and reasonably efficient methods for evaluating the singular integrals [32-34].  

The boundary element method normally requires the evaluation of the discrete form of a 

number of integral operators, of which at most one will have the logarithmic singularity 

of this enquiry. However, the integrands in all required integral operators that occur are 

functions of r, the distance of the integration point from the singularity, and hence there 

is significant merit (in terms of computational cost) in using the same quadrature rule for 

all the integral operators that are required. Pursuing the optimal integration method for 

one integral operator, as we are in this work, without reference to the other integral 

operators will not necessarily return the best overall integration rule for the BEM. In 

practice, the aim is to achieve a numerical integration method that works well for all 

required operators in the boundary element method. 

Various methods for handling singularities are discussed in Section 3. ‘Subtracting out’ 

the singularity is a generally useful method, for example with solving the Helmholtz 

equation (2) for a range of values for the wavenumber, the subtracted out integral may 

be evaluated ‘once and for all’ and then used for each value of k. For the cases of 2D and 

axisymmetric 3D problems, once the singularity is subtracted out, the remaining integral 

is regular. However, ‘subtracting out’ the singularity does not completely avoid the issue 

of singular integrals.  

An appropriate substitution can transform a singular integral into a regular one. The two 

main substitutions that have been employed in the BEM were outlined in Section 3; the 

erf rule or a polynomial or power substitution. The polynomial or power substitution is 

generally attractive because of its relative simplicity. For the problem considered in this 

paper (1), with the singularity at the centre, the power transformation 𝑥 = 𝑡𝑝 (with 𝑝 ≥

3 and an odd number) is a simple method for regularising the integral, and usefully 

maintains the same domain of integration; standard quadrature rules can be applied 

directly. 

The results from applying the 𝑥 = 𝑡𝑝 substitution, followed by Gaussian quadrature, are 

given in Section 4. Gauss-Legendre rules are applied with an even number of points, so 

that evaluation at the centre could be avoided. In Tables 1 and 2 the numerical error 

resulting from applying 4, 8, 12 and 16-point Gauss-Legendre rules to the transformed 

test integrals are tabulated for a range of values of the power p. It is noted that as p 

increased the transformed quadrature points clustered closer to the singularity, with 

smaller transformed weighting, and an example of this is given in Table 3. Hence there is 



a potential for deleting the transformed quadrature points that are very close to the 

singularity with a marginal loss of accuracy and a shortened processing time. Table 4 

shows the results of the 𝑥 = 𝑡𝑝 substitution followed by a Gauss Legendre rule with an 

odd number of points with the central point deleted (with no effect on accuracy). The 

results in Table 4 generally compare favourably with the results in Table 2, the 

corresponding results requiring the same processing time.  

A notable conclusion from this work is in the guidance it suggests for the optimal value 

for p. From the results of the more realistic test problem in Tables 2 and 4, the optimal 

values of p are 5 or 7 for the 4-point rules, p=7 for the 8 or 12-point rules and p=9 for the 

16-point rule. The extent of the transformation of the integral runs with the power p, but 

the effects of this are offset by the improved continuity properties.  

The near-optimal quadrature rules for integrating functions with a logarithmic mid-point 

singularity, based on this method and the test results are given in Table 6. The resulting 

‘optimal’ methods have been applied to a test problem of integrating over an 

axisymmetric panel with a 1/𝑟 singularity, typically found in the boundary element 
method.  

 4-point rule (p=5)_ 8-point rule (p=7)_ 12-point rule (p=7)_ 16-point rule (p=9)_ 
±points weights ±points weights ±points weights ±points weights 
.04526940 .20119285 .00037687 .00254122 .00003453 .00023730 1.83822E-07 1.63659E-06 
.61104331 .79880715 .03266366 .09714748 .00364996 .01183885 8.13475E-05 .000350197 
 .28546776 .43178366 .04512310 .08759953 0.002447359 .00661812 

.79731641 .46852763 .21262820 .25786505 .02301861 .04256819 
 .54773253 .38492394 .10875040 .14012126 

.89439875 .25753532 .31725330 .27583638 
 .63429430 .33302527 

.91830753 .20147896 
 

Table 6. Near-optimal quadrature rules for functions with a mid-point logarithmic 

singularity. 

In this paper the solution of integrals on [-1,1] with a midpoint logarithmic singularity 

have been explored, with a particular focus on the 𝑥 = 𝑡𝑝 transformation followed by 

Gauss-Legendre quadrature, where p is an odd number and p≥3. Based on the results, 

the recommendation is to choose a high value of p of 5 or 7 for quadrature rules with few 

points and use larger values of p as the number of points increases, as indicated in the 

results. Standard quadrature rules with a point at the centre (eg Gauss-Legendre rules 

with an odd number of points) are useful, as the central point may be deleted. The results 

are compared with the 𝑝 = 3 substitution in Tables 4 and 5, the outcome of Telles work, 
and the superior convergence and significant improvements in accuracy are evident. 
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